Nature发文:深度学习系统为什么这么好骗?
当研究人员给予机器人一个目标,例如向它展示一张几乎空的托盘图像,并指定机器人安排物体来匹配状态。这样,机器人可以与其之前未见过的物体交互并即兴做出行动,例如用海绵将桌子上的物体抹干净。机器人还能意识到,用塑料水壶清理掉挡道的物体要比直接拿起它们要快。 伯克利实验室的研究员 Chelsea Finn 认为,一般而言,这种学习可以使得 AI 更深入地了解物体和世界。如果你曾经只在照片上见过水壶或海绵,则或许能够在其他图像中识别出它们。但是,你不会真正地理解它们是什么或它们用来做什么。因此,Finn 表示,只有你真正地与它们接触才可以更深入地了解它们。 但是,这种学习过程很慢。在模拟环境中,AI 可以非常快速地浏览示例。例如,2017 年,DeepMind 的 AlphaZero 自学习游戏软件接受训练在围棋、国际象棋和日本象棋领域大杀四方。那时,AlphaZero 针对每场赛事进行了 2000 多万场训练游戏。 AI 机器人学习这种能力很慢。AI 和机器人公司 Ambidextrous 联合创始人 Jeff Mahler 表示,在深度学习领域,几乎所有的结果都极度依赖大量数据。他说道:「在单个机器人上收集数以千万计的数据点将需要连续数年的执行时间。」此外,数据或许不可靠,因为传感器校准会随时间出现变化,硬件也会退化。 因此,大多数涉及深度学习的机器人工作仍然使用模拟环境来加速训练。亚特兰大佐治亚理工学院机器人专业的博士生 David Kent 认为,你能学到什么取决于模拟器有多好。模拟器一直在改进,研究人员也正在把从虚拟世界学到的经验更好地转移到现实世界。然而,这样的模拟仍然无法应对现实世界的复杂性。 Finn 认为,使用机器人学习最终要比使用人工数据学习更容易扩展。她制作的会使用工具的机器人花了几天时间学会了一项相对简单的任务,但不需要大量的监控。她说:「你只要运行这个机器人,每隔一段时间就需要检查一下。」她想象着有一天,世界上有很多机器人可以使用自己的设备,昼夜不停地学习。这应该是可能的——毕竟,这是人们理解世界的方式。「小孩不能通过从 Facebook 下载数据来学习,」Schmidhuber 说。 从较少的数据中学习 需要指出的一点是,一个小孩也可以通过一些数据点识别出新的物体:即使他们之前从来没有见过长颈鹿,但依然可以在看过它们一两次后识别出来。识别如此之快的部分原因是,这个小孩已经看过很多除长颈鹿之外的其他生物,所以熟悉了这些生物的显著特征。 将这些能力赋予 AI 的一个统称术语是迁移学习:即将之前通过训练获得的知识迁移到其他任务上。实现迁移的一种方法是在新任务训练时将所有或部分预训练任务再次用作起点(starting point)。例如,再次使用已经被训练用来识别一种动物(如识别基本体型的层)的部分 DNN 可以在学习识别长颈鹿时为新网络带来优势。 (编辑:惠州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |