Nature发文:深度学习系统为什么这么好骗?
Hendrycks 等研究者建议测试 DNN 在各种对抗样本的性能,从而量化 DNN 对犯错的鲁棒性。他们表明,训练能抵御一种攻击的神经网络可能会削弱它对其他攻击的抵抗力,而鲁棒性的 DNN 不应该因其输入的微小扰动而改变其输出。这种因扰动而改变最终结果的属性,很可能是在数学层面上引入神经网络的,它限制了 DNN 学习的方式。 然而在当时,没有人可以解决所有 AI 都很脆弱这一问题。问题的根源,根据 Bengio 的说法,深度神经网络中没有一个很好的可以选择什么是重要的模型。当 AI 观察一个将狮子篡改为图书馆的图片,人类依然可以看到狮子,因为他们有一个思维模型,能够将动物视为更高级的特征——如耳朵、尾巴、鬃毛等。而其他低级别的细节则会被忽略掉。「我们知道从先验知识中学习什么特征是重要的,」Bengio 说,「而这来自于对结构化的世界的深度理解。」 解决此问题的一种尝试是将 DNN 与符号 AI 结合起来。符号 AI 也是机器学习之前,人工智能的主要方法。借助符号 AI,机器可以使用关于世界如何运作的硬编码规则进行推理,例如它包含离散的对象,之间以各种方式相互关联。一些研究人员,例如纽约大学的心理学家 Gary Marcus 说,混合 AI 模型是前进的方向。「深度学习在短期内非常有用,以至于人们对长期发展视而不见,」一直以来对当前深度学习方法持批评态度的马库斯说。 今年 5 月,他在加利福尼亚州帕洛阿尔托联合创立了一家名为 Robust AI 的初创公司,该公司旨在将深度学习与基于规则的 AI 技术相结合,以开发可以与人一起安全操作的机器人。公司正在做工作仍处于保密状态。 即使可以将规则嵌入到 DNN 中,这些规则的效果也只是能与学习一样好。Bengio 说,AI 智能体需要在更丰富的可探索环境中学习。例如,大多数计算机视觉系统无法识别一罐啤酒是圆柱形的,因为它们只在 2D 图像数据集上进行训练。这就是 Nguyen 等研究者发现我们可以通过不同角度的对象来愚弄 DNN 的原因。 但是,AI 的学习方式也需要改变。Bengio 说:「了解因果关系必须在现实世界做一些任务,智能体可以实验并探索现实世界。」另一位深度学习的先驱,Jürgen Schmidhuber 说,模式识别非常强大,足以使阿里巴巴、腾讯、亚马逊、Facebook 和 Google 等企业成为世界上最有价值的公司。他说:「但是将会有更大的浪潮,其涉及智能体操纵真实世界并通过自己的行动创建自己的数据。」 从某种意义上来讲,使用强化学习在人工环境中搞定计算机游戏的方式已经是这样了:通过反复试错,智能体以规则允许的方式操纵屏幕上的像素点,直到达成目标为止。然而,真实世界要比当今大多数 DNN 训练所依据的模拟环境或数据集要复杂得多。 即兴表演的机器人 如下图所示,在加州大学伯克利分校 (University of California, Berkeley) 的一个实验室里,一只机器人手臂在杂物中翻找。它拿起一个红色的碗,然后用它把一只蓝色的烤箱手套向右推几厘米。它放下碗,拿起一个空的塑料喷射器,然后估量着平装书的重量和形状。经过连续几天的筛选,机器人开始对这些陌生的物体有了感觉,知道它们各自用来做些什么。 机器人手臂正在使用深度学习来教自己使用工具。给定一盘物体,它依次捡起并观察每一个物体,观察当它移动它们并将一个物体撞向另一个物体时会发生什么。 (编辑:惠州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |