洞察什么容貌最吸引你
智能系统主要依据于人工神经网络 (ANNs),后者试图模拟人类大脑的工作方式来实现学习功能,同时,它可以被训练来识别信息模式——包括语音、文本数据或者视觉图像,它是近年来人工智能发展的基础。 对抗式网络如何运行?科学家通过让两种算法相互对抗来生成对抗式网络,从而试图创建人类真实的主观意识偏好选择。 这些 “想象出来的”数字创作,可以是图像、视频、声音和其他内容形式,主要基于输入系统的相关数据,人工智能机器系统依据所学创造新的内容,而另一个人工智能系统则对这些数字创作进行批评,指出其中的缺陷和不准确之处。 最终,该过程可使人工智能系统学习更多的新信息,而不需要人类的任何输入内容。 人工智能如何通过神经网络进行学习?人工智能系统主要依据于人工神经网络(ANNs),后者试图模拟人类大脑的工作方式来实现学习功能,同时,它可以被训练来识别信息模式——包括语音、文本数据或者视觉图像,它是近年来人工智能发展的基础。 传统人工智能通过输入大量信息来 “教授”有关特定目标的算法,实际应用包括谷歌的语言翻译服务、Facebook 的面部识别软件和 Snapchat 的实时图像滤镜。
输入这些数据的过程可能非常耗时,并且仅限于一种类型的知识,一种被称为对抗性神经网络的新型人工神经网络可使两个人工智能系统相互竞争,使它们相互学习。该方法旨在加速学习进程,并优化人工智能输出 “数字创作”。 (编辑:惠州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |