加入收藏 | 设为首页 | 会员中心 | 我要投稿 惠州站长网 (https://www.0752zz.com.cn/)- 办公协同、云通信、物联设备、操作系统、高性能计算!
当前位置: 首页 > 大数据 > 正文

在采用人工智能时保护隐私的3个重要安全实践

发布时间:2021-06-10 14:02:56 所属栏目:大数据 来源:互联网
导读:企业在实施人工智能策略之前,需要考虑采用一些新技术以帮助保护隐私,并确保符合安全标准。 如果企业参与了下一代数字产品工程,那么尝试采用人工智能(AI)将帮助企业构建新的业务模型、收入流和体验。 但是企业应该了解有关人工智能技术创新的头条新闻。例
 
大约20年前,DevOps彻底改变了应用程序的开发、部署和管理方式。它使管道实现标准化,从而显著提高了效率,并缩短了交付时间。
 
如今,AIOps/MLOps在人工智能方面也在做同样的事情。Cognilityca公司预测,到2025年,全球MLOps市场规模将扩大到40亿美元。
 
这个想法是通过标准化操作、衡量性能和自动修复问题来加速整个机器学习模型的生命周期。AIOps可以应用于以下三层:
 
(1)基础设施层
 
这就是容器化发挥作用的地方。自动化工具使组织可以扩展其基础设施和团队,以满足容量需求。DevOps的一个新兴子集叫GitOps,它专门将DevOps原理应用于在容器中运行的基于云计算的微服务。
 
(2)应用程序性能管理(APM)
 
根据IDC公司的一项调查,全球应用程序宕机每年造成的损失在1.25美元到25亿美元。应用程序性能管理(APM)通过简化应用程序管理、限制停机时间和最大限度地提高性能来帮助组织。应用程序性能管理(APM)解决方案结合了AIOps方法,使用人工智能和机器学习主动识别问题,而不是采用被动方法。
 
(3)IT服务管理(ITSM)
 
IT服务规模巨大,实际上可以代表IT组织提供给最终用户的任何硬件、软件或计算资源,无论该最终用户是内部员工、客户还是业务合作伙伴。ITSM采用AIOps实现票务工作流、管理和分析事件、授权和监视文档等方面的自动化。
 
虽然大多数组织为了提高效率而实施AIOps/MLOps,但许多组织发现,例如应用程序性能管理(APM)平台可以利用其丰富的数据资源作为预警系统,从而增加额外的安全层。随着人工智能/机器学习生命周期得到更严格的优化和结构化,安全和隐私风险将更容易识别和减轻。
 
负责任地进行实验
 
在过去的几年中,人们已经看到了许多强大的人工智能用例,但是未来将是确保这些用例背后的人工智能系统负责任地使用数据。随着越来越多的隐私法规发布,并且随着组织看到法规实际上增加了透明度和对客户的信任,是需要尝试负责任的人工智能的时候了。联合学习、可解释的人工智能和AIOps/MLOps将是三个很好的起点

(编辑:惠州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读