企业的人工智能计划获得成功必须做的10件事
发布时间:2021-06-10 13:30:01 所属栏目:大数据 来源:互联网
导读:在实施人工智能的计划中,一些企业可能会忽略一些重要的细节,这些细节可能意味着人工智能计划成败之间的差异。 在获得市场竞争优势的过程中,很多企业急于采用新兴技术。然而在匆忙实施的情况下,一些企业由于缺乏扎实的基础而在应用中陷入困境。 分析决策
2.训练优质数据
永远不要低估数据的力量。如果它很杂乱,那么这是一种自然状态,企业收集的数据通常是不一致、不准确、不完整或重复的。当使用没有清理过的数据作为训练数据时,可能会导致不良结果,例如较差的建议和错误的结论。
移动和网络应用平台提供商ISBX公司总裁Arthur Iinuma说,“人工智能具有强大的能力,但任何人工智能解决方案都只能与其源数据一样好。在任何人工智能实施之前,必须采取措施确保数据质量和可用性,并定义清晰和可衡量的关键绩效指标。全面清洁的数据集对于确保最佳结果至关重要。”
3.认识到实验室结果和现实世界的结果可能不同
一些人工智能试点项目在实验室中工作良好,但在现实世界中却表现不佳,因为现实世界要复杂得多且随机得多。同样,一个成功的用例并不能保证人工智能应用于另一种用例时也会表现良好。
人工智能开发商BeyondMinds公司首席执行官Rotem Alaluf说:“现实世界中的人工智能与实验室中的人工智能并不完全相同,其解决方案应该更加完整、稳定以及适应性强。这就像专业选手和业余选手的区别一样。虽然采用的是相同的游戏规则,但是反应和适应意外的技能和能力不同。我们需要了解实验室人工智能技术的局限性,了解在现实世界中如何从中创造价值,并在企业中以可扩展的方式使用。”
4.人工智能获得成功需要团队的努力
人工智能技术总是离不开数据科学家的参与。人工智能项目实际上是一项团队活动,它需要获得企业管理人员的支持和跨职能业务部门的协作。
Betsy说:“让相关的业务和产品决策者、数据所有者和经理、工程团队和数据科学家协同工作是至关重要的。如果缺少一些利益相关者的支持,成功的可能性就很小。在大型企业中,尤其是那些业务职能分工分明的企业,建立所需的跨职能团队可能很困难。企业需要确保在每个区域的报告链中都得到支持。”
例如,如果数据科学团队与领导人工智能计划的产品团队位于企业的不同部门,那么明智的做法是获得管理数据科学家的管理者的支持,以避免优先排序或资源冲突。
![]() (编辑:惠州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |