加入收藏 | 设为首页 | 会员中心 | 我要投稿 惠州站长网 (https://www.0752zz.com.cn/)- 办公协同、云通信、物联设备、操作系统、高性能计算!
当前位置: 首页 > 大数据 > 正文

数据挖掘中的模式发现(八)轨迹模式挖掘、空间模式挖掘

发布时间:2020-12-24 12:06:58 所属栏目:大数据 来源:网络整理
导读:副标题#e# 这是模式挖掘、数据挖掘的一部分应用。 空间模式挖掘(Mining Spatiotemporal Patterns) 两个空间实体之间存在若干拓扑关系,这些关系基于两个实体的位置: 分离 相交 包含 如图所示地表示位置信息,可以提取类似下面的规则: is_a(x,large_town)?

图14

  • Swarm
    • Time-relaxed convoy. 对象在时间上的倒数

图15

挖掘语义丰富的运动模式(Mining Semantics-Rich Movement Patterns)

  • 频繁移动模式:频繁出现在输入轨迹数据库中的移动序列
  • 频繁移动模式与频繁连续模式:
    • 两者都旨在从输入序列数据库找到频繁的子序列
    • 对于挖掘频繁运动模式,类似地方(例如下图右图以功能分类)可能需要分组以共同形成频繁子序列

图16

  • 语义丰富的运动模式:
    • 除了知道人们如何移动,从一个地区到另一个地区,我们也想了解地区的功能
    • 例如,office和home可能是在相同的地方,有着相同的功能;也可能在不同的地方,有着不同的功能。如上图左图所示。

Step1

找到一组反映人们粗糙的语义级转换的模式。例如,办公室→餐馆,家庭→健身房。

粗糙的语义在之前讲的progressive refinement中说过,是一些粗糙的语义定义,比如,办公室、办公场所,甚至是一些更加具体的名词,如政府办等。

Step2

通过分组,将每个粗糙分类的相似图案分成几个细粒度图案运动片段。

论文:C. Zhang et al.,Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories,VLDB 2014

(编辑:惠州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读