大数据技术在金融行业中的应用
(1)医疗保险欺诈与滥用分析。医疗保险欺诈与滥用通常可分为两种,一是非法骗取保险金,即保险欺诈;另一类则是在保额限度内重复就医、浮报理赔金额等,即医疗保险滥用。保险公司能够利用过去数据,寻找影响保险欺诈最为显著的因素及这些因素的取值区间,建立预测模型,并通过自动化计分功能,快速将理赔案件依照滥用欺诈可能性进行分类处理。 (2)车险欺诈分析。保险公司够利用过去的欺诈事件建立预测模型,将理赔申请分级处理,可以很大程度上解决车险欺诈问题,包括车险理赔申请欺诈侦测、业务员及修车厂勾结欺诈侦测等。 2.2.3 精细化运营 (1)产品优化,保单个性化。过去在没有精细化的数据分析和挖掘的情况下,保险公司把很多人都放在同一风险水平之上,客户的保单并没有完全解决客户的各种风险问题。但是,保险公司可以通过自有数据以及客户在社交网络的数据,解决现有的风险控制问题,为客户制定个性化的保单,获得更准确以及更高利润率的保单模型,给每一位顾客提供个性化的解决方案。 (2)运营分析。基于企业内外部运营、管理和交互数据分析,借助大数据台,全方位统计和预测企业经营和管理绩效。基于保险保单和客户交互数据进行建模,借助大数据平台快速分析和预测再次发生或者新的市场风险、操作风险等。 (3)代理人(保险销售人员)甄选。根据代理人员(保险销售人员)业绩数据、性别、年龄、入司前工作年限、其它保险公司经验和代理人人员思维性向测试等,找出销售业绩相对最好的销售人员的特征,优选高潜力销售人员。 2.3 证券行业大数据应用 大数据时代,大多数券商们已意识到大数据的重要性,券商对于大数据的研究与应用正在处于起步阶段,相对于银行和保险业,证券行业的大数据应用起步相对较晚。目前国内外证券行业的大数据应用大致有以下几个方向: 2.3.1 股价预测 2011年5月英国对冲基金Derwent Capital Markets建立了规模为4000 万美金的对冲基金,该基金是首家基于社交网络的对冲基金,该基金通过分析Twitter 的数据内容来感知市场情绪,从而指导进行投资。利用 Twitter 的对冲基金 Derwent Capital Markets 在首月的交易中确实盈利了,其以1.85%的收益率,让平均数只有0.76%的其他对冲基金相形见绌。 麻省理工学院的学者,根据情绪词将twitter内容标定为正面或负面情绪。结果发现,无论是如“希望”的正面情绪,或是“害怕”、“担心”的负面情绪,其占总twitter内容数的比例,都预示着道琼斯指数、标准普尔500指数、纳斯达克指数的下跌;美国佩斯大学的一位博士则采用了另外一种思路,他追踪了星巴克、可口可乐和耐克三家公司在社交媒体上的受欢迎程度,同时比较它们的股价。他们发现,Facebook上的粉丝数、Twitter 上的听众数和 Youtude 上的观看人数都和股价密切相关。另外,品牌的受欢迎程度,还能预测股价在10天、30天之后的上涨情况。但是,Twitter 情绪指标,仍然不可能预测出会冲击金融市场的突发事件。例如,在2008年10月13号,美国联邦储备委员会突然启动一项银行纾困计划,令道琼斯指数反弹,而3天前的Twitter相关情绪指数毫无征兆。而且,研究者自己也意识到,Twitter 用户与股市投资者并不完全重合,这样的样本代表性有待商榷,但仍无法阻止投资者对于新兴的社交网络倾注更多的热情。 2.3.2 客户关系管理 (编辑:惠州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |