大数据产业发展情况及展望
其次,中国的数据有它的特色,例如在金融行业,目前大部分银行采用的是风险评分卡,运用专家经验定义风险变量,基于定性认识进行评分,通过事后风险回检优化评分卡,风险预警功能较差。虽然央行征信中心与国内少数技术领先银行使用的是风险评分模型,但模型方法相对陈旧,如央行所用FICO评分模型为上世纪80年代基于逻辑回归算法构建的评分体系,逻辑回归算法适合处理线性数据,但实际问题往往是非线性的,特别是信用风险评估场景下。此外,FICO模型没有针对我国具体业务进行场景细分,建模逻辑并不完全符合我国实际情况,因此导致准确率不足,风险预警能力差。 (三)专业人才 我们国家大数据发展最大的优势就是市场大,最大的劣势恰巧就是缺乏相应专业人才,人才缺乏的程度非常严重。首先在国际市场方面,我们要跟国外公司争人才,然而国外大数据行业同样十分火热。而不论在国内还是国外,跟企业竞争人才都是一项艰巨的事业,比如在世界上最好的大学之一的美国普林斯顿大学,想找数学家也是非常困难,人才很容易被大公司挖走,每年都有非常好的数据分析人才被企业挖走。所以人才难觅不只是口头说说,更是一个亟待解决的问题。 目前为止,我们国家仍然没有良好的培育大数据人才的机制,大数据教育主要面临以下三个问题。首先,大数据是一个交叉学科,涉及统计学,管理,编程等多学科,知识点复杂,培训课程编辑难度大,缺乏系统的学习教程;其次,现阶段大数据教育大多还停留在理论知识上,理论与实战严重脱节,学习者缺乏良好的实践机会;再次,大数据教育的根本目的是为了解决业务上面临的实际问题,用科学的手段推动业务的进展,然而现阶段的大数据教育机构普遍缺乏相应的业务经验,产学研结合并不密切。 三、我国大数据产业发展展望 (一)大数据政策体系持续完善 据不完全统计,从2014年至今我国涉及到大数据发展与应用的国家政策规定已多达63个,其中国家大数据发展顶层设计1个,国家层面顶层规划4个,重点行业领域发展应用31个,重点工作推进25个,重点区域发展2个。大数据战略已上升为国家战略高度,各部委从战略规划、技术能力提升、应用与管理三个层面积极落实推进大数据发展政策。 表1 部分部委大数据政策一览表 (二)大数据产业生态正在形成 (编辑:惠州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |