加入收藏 | 设为首页 | 会员中心 | 我要投稿 惠州站长网 (https://www.0752zz.com.cn/)- 办公协同、云通信、物联设备、操作系统、高性能计算!
当前位置: 首页 > 教程 > 正文

实时数据平台设计:解决从OLTP到OLAP实时流转缺失

发布时间:2018-08-18 12:24:30 所属栏目:教程 来源:卢山巍
导读:副标题#e# 技术沙龙 | 邀您于8月25日与国美/AWS/转转三位专家共同探讨小程序电商实战 本文将会分上下两篇对一个重要且常见的大数据基础设施平台展开讨论,即实时数据平台。在上篇设计篇中,我们首先从两个维度介绍实时数据平台:从现代数仓架构角度看待实时

典型的数据处理,可分为OLTP、OLAP、Streaming、Adhoc、Machine Learning等。这里给出OLTP和OLAP的定义和对比:

实时数据平台设计:解决从OLTP到OLAP实时流转缺失

图5

注:图5选自文章“Relational Databases are not Designed for Mixed Workloads”-Matt Allen

从某种角度来说,OLTP活动主要发生在业务交易库端,OLAP活动主要发生在数据分析库端。那么,数据是如何从OLTP库流转到OLAP库呢?如果这个数据流转时效性要求很高,传统的T+1批量ETL方式就无法满足了。

我们将OLTP到OLAP的流转过程叫Data Pipeline(数据处理管道),它是指数据的生产端到消费端之间的所有流转和处理环节,包括了数据抽取、数据同步、流上处理、数据存储、数据查询等。这里可能会发生很复杂的数据处理转换(如重复语义多源异构数据源到统一Star Schema的转换,明细表到汇总表的转换,多实体表联合成宽表等)。如何支持实时性很高的Pipeline处理能力,就成了一个有挑战性的话题,我们将这个话题描述为“在线管道处理”(OLPP, Online Pipeline Processing)问题。

因此,本文所讨论的实时数据平台,希望可以从数据处理角度解决OLPP问题,成为OLTP到OLAP实时流转缺失的课题的解决方案。下面,我们会探讨从架构层面,如何设计这样一个实时数据平台。

二、架构设计方案

1定位和目标

实时数据平台(Real-time Data Platform,以下简称RTDP),旨在提供数据端到端实时处理能力(毫秒级/秒级/分钟级延迟),可以对接多数据源进行实时数据抽取,可以为多数据应用场景提供实时数据消费。作为现代数仓的一部分,RTDP可以支持实时化、虚拟化、平民化、协作化等能力,让实时数据应用开发门槛更低、迭代更快、质量更好、运行更稳、运维更简、能力更强。

2整体设计架构

概念模块架构,是实时数据处理Pipeline的概念层的分层架构和能力梳理,本身是具备通用性和可参考性的,更像是需求模块。图6给出了RTDP的整体概念模块架构,具体每个模块含义都可自解释,这里不再详述。

实时数据平台设计:解决从OLTP到OLAP实时流转缺失

图6 RTDP整体概念模块架构

下面我们会根据上图做进一步设计讨论,给出从技术层面的高阶设计思路。

实时数据平台设计:解决从OLTP到OLAP实时流转缺失

图7 整体设计思想

由图7可以看出,我们针对概念模块架构的四个层面进行了统一化抽象:

  • 统一数据采集平台
  • 统一流式处理平台
  • 统一计算服务平台
  • 统一数据可视化平台

同时,也对存储层保持了开放的原则,意味着用户可以选择不同的存储层以满足具体项目的需要,而又不破坏整体架构设计,用户甚至可以在Pipeline中同时选择多个异构存储提供支持。下面分别对四个抽象层进行解读。

(1)统一数据采集平台

(编辑:惠州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读