加入收藏 | 设为首页 | 会员中心 | 我要投稿 惠州站长网 (https://www.0752zz.com.cn/)- 办公协同、云通信、物联设备、操作系统、高性能计算!
当前位置: 首页 > 建站 > 正文

10分钟零基础就可搞懂的Hadoop架构原理,阿里架构师详解

发布时间:2019-10-26 16:35:16 所属栏目:建站 来源:IT技术管理那些事儿
导读:副标题#e# 我今天花了大半个下午的时间,写了这篇hadoop的架构,全篇都是以大白话的形式,也算是为后面更加详细的每一部分开了个好头吧,如果喜欢请点转发和关注,如果有疑问,直接在评论里说出来,大家一起解决,才能进步。 一、概念 Hadoop诞生于2006年,

Metastore组件:元数据服务组件,这个组件存储Hive的元数据,Hive的元数据存储在关系数据库里,Hive支持的关系数据库有Derby和Mysql。元数据对于Hive十分重要,因此Hive支持把Metastore服务独立出来,安装到远程的服务器集群里,从而解耦Hive服务和Metastore服务,保证Hive运行的健壮性;

Thrift服务:Thrift是Facebook开发的一个软件框架,它用来进行可扩展且跨语言的服务的开发,Hive集成了该服务,能让不同的编程语言调用Hive的接口。

4.Hive与传统数据库的异同

(1)查询语言

由于 SQL 被广泛的应用在数据仓库中,因此专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。

(2)数据存储位置

Hive是建立在Hadoop之上的,所有Hive的数据都是存储在HDFS中的。而数据库则可以将数据保存在块设备或者本地文件系统中。

(3)数据格式

Hive中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、”t”、”x001″)、行分隔符(”n”)以及读取文件数据的方法(Hive中默认有三个文件格式TextFile,SequenceFile以及RCFile)。

(4)数据更新

由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不支持

对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用INSERT INTO … VALUES添加数据,使用UPDATE … SET修改数据。

(5)索引

Hive在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些Key建立索引。Hive要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于MapReduce的引入, Hive可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了Hive不适合在线数据查询。

(6)执行

Hive中大多数查询的执行是通过Hadoop提供的MapReduce来实现的(类似select * from tbl的查询不需要MapReduce)。而数据库通常有自己的执行引擎。

(7)执行延迟

(编辑:惠州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读