调参侠看过来!两个提高深度学习训练效率的绝技
参数服务器模式,见下图。在每个worker执行完一个batch的训练后,反向传播参数的时候,所有的worker都会把参数传给参数服务器,进行汇总求均值,之后再传给每个worker,进入第二个batch的训练。(图片来自网络) 参数服务器有一个或者多个的结构模式,可以看出这种数据并行的模式效率是否提升取决于参数服务器与worker之间的通信效率,也就是最慢的worker的训练时间和参数服务器的接收和更新参数后再回传的时间。worker数量多的话,参数服务器可能存在瓶颈。(图片来自网络) 3.2.2 ring-reduce 百度提出的ring-reduce摒弃了参数服务器,采用环状结构来更新参数。ring-reduce把所有的worker组成一个两两相邻的环形结构。每个worker只与相邻的worker交换参数。经过几次交换之后,所有的worker都包含其他worker的参数信息,达到更新的目的。(图片来自网络) 下面几张图,可以看到其中的几个步骤;ring-reduce为了加快速度,并不是一次性交换所有的参数;而是先把参数进行分割,不断交换分割后参数。 4. 实现框架:Horovod Horovod 是 Uber 开源的又一个深度学习工具,它的发展吸取了 Facebook「一小时训练 ImageNet 论文」与百度 Ring Allreduce 的优点,可为用户实现分布式训练提供帮助。https://github.com/horovod/horovod 采用NCCL 替换百度的 ring-allreduce 实现。NCCL 是英伟达的集合通信库,提供高度优化的 ring-allreduce 版本。NCCL 2 允许在多个机器之间运行 ring-allreduc。 如果要把单机的训练代码修改成分布式的代码,只要几个步骤就可以了 改造分布式训练: (编辑:惠州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |