智能专用SoC芯片IP需求分析
前支持AI计算开发的半导体有独立加速器和 in-memory/near-memory 计算技术两种。独立加速器以某种方式连接到应用处理器,并且有一些应用处理器在设备上添加了神经网络硬件加速。独立加速器可以通过芯片与芯片的互连而实现了将硬件扩展到多个芯片的巨大创新,从而实现最高性能,in-memory 和 near-memory 计算技术主要满足减少能耗需求。 设备上的 AI 加速正在通过利用处理器和架构对他们的神经网络处理器进行升级,这些处理器和架构是独立半导体的先驱。半导体领导者、行业巨头和数百家初创公司都在全力将 AI 能力推广到各个行业的大量新型 SoC 和芯片组中,涵盖从云服务器组到每个厨房中的家庭助理等所有环节。 深度学习神经网络用在许多不同的应用中,为使用它们的人提供了强大的新工具。例如,它们可以用于高级安全威胁分析、预测和预防安全漏洞,以及通过预测潜在买家的购物流程而帮助广告商识别和简化销售流程。这是在融合最新 GPU 和 AI 加速器半导体技术的服务器群中运行的数据中心应用的两个实例。
但 AI 设计并未包含在数据中心内。许多新功能可基于传感器输入的组合而了解发生的情况,例如用于对象和面部检测的视觉系统,用于改进人机接口的自然语言理解以及上下文感知)。这些深度学习能力已添加到所有行业的 SoC 中,包括汽车、移动、数字家庭、 (编辑:惠州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |